
Part IV
Powering Android

with Java Code

 Check out the article “Using Android Asset Studio” (and more) online at www.
dummies.com/extras/javaprogrammingforandroiddevelopers.

http://www.dummies.com/extras/javaprogrammingforandroiddevelopers

In this part . . .
 ✓ Responding to touches, clicks, and pops
 ✓ Becoming a collector (in the Java sense)
 ✓ Creating an app that uses social media
 ✓ Creating an Android game

Chapter 11

A Simple Android Example:
Responding to a Button Click

In This Chapter
▶ How to make a button do something
▶ Putting a class inside another class
▶ Using Android’s special tricks to avoid programming hassles

I
n common English usage, an insider is someone with information that’s
not available to most people. An insider gets special information because

of her position within an organization.

American culture has many references to insiders. Author John Gunther
became famous for writing Inside Europe and Inside Africa and other books in
his Inside series. On TV crime shows, an inside job is a theft or a murder com-
mitted by someone who works in the victim’s own company. So significant is
the power of inside information that in most countries, insider stock trading
is illegal.

In the same way, a Java class can live inside another Java class. When
this happens, the inner class has useful insider information. This chapter
explains why.

The First Button-Click Example
Ever heard that wonderful old joke about a circus acrobat jumping over
mice? Unfortunately, I’d get sued for copyright infringement if I included it
in this book. Anyway, the joke is about starting small and working your way
up to bigger things. That’s what you do when you read Java Programming For
Android Developers For Dummies. Most of the programs in this book aren’t

304 Part IV: Powering Android with Java Code

Android apps. Instead, the programs are standard Oracle Java apps — apps
that run on a desktop or a laptop computer, not on an Android device. In fact,
the JOptionPane.showMessageDialog method that I use in many of this
book’s examples runs only on a desktop or laptop, not on Android.

Why does a book with the word Android featured prominently in its title
contain many examples that don’t run on phones or tablet devices? The
answer is that you must always start practicing by jumping over small mice.
Compare the sets of instructions in Chapters 3 and 4, and notice how much
more work is involved in running a Hello World Android app. When you prac-
tice creating several Android apps, you become accustomed to the eccentric-
ities of Android’s emulator. But when you’re learning Java, you don’t want an
emulator’s quirks to get in the way. Java is Java, whether it’s a standard Java
app to display the words Hello World or an Android app to send a spaceship
to another world.

Anyway, by the time you reach Chapter 11, you’re ready to see some Java fea-
tures running on a phone or on a phone emulator. So this chapter’s example,
simple though it might be, is specific to Android.

Creating the Android app
You can import this chapter’s code from my website (http://allmycode.
com/Java4Android) by following the instructions in Chapter 2. But if you
want to create the example on your own, follow the next several steps:

 1. Follow the instructions in Chapter 4 to create a skeletal Android
 application.

 2. Expand your new project’s branch in Eclipse’s Package Explorer tree,
on the left.

 3. In the project’s branch, navigate to the res/layout directory.

 4. In the res/layout directory, double-click the activity_main.xml
item.

 A graphical layout of your app shows up in Eclipse’s editor, as shown in
Figure 11-1.

 You can resize this Graphical Layout view of the app by clicking the little
magnifying glass icons near the upper-right corner of the editor.

 The activity_main.xml file contains a bunch of XML code describing
the look (the layout) of your Android activity. To switch between the
picture displayed in Figure 11-1 and the actual XML code, select either
the Graphical Layout tab or the activity_main.xml tab at the bottom
of Eclipse’s editor.

http://allmycode.com/Java4Android
http://allmycode.com/Java4Android

305 Chapter 11: A Simple Android Example: Responding to a Button Click

Figure 11-1:
A blank
 layout.

 5. In the palette on the left side of the graphical layout, expand the Form
Widgets category.

 In this Form Widgets category, you find TextView elements, buttons,
check boxes, and other doodads, as shown in Figure 11-2.

Figure 11-2:
Dragging a
button onto
your app’s

layout.

 6. Drag a button from the Form Widgets category onto your app’s layout
(refer to Figure 11-2).

 7. Notice the names of the items in Eclipse’s Outline view.

 Most likely, the names you see are RelativeLayout, textView1, and
button1, as shown in Figure 11-3.

 8. On Eclipse’s main menu, select File➪Save.

 Doing so saves your changes to the activity_main.xml file.

306 Part IV: Powering Android with Java Code

Figure 11-3:
Eclipse’s

Outline
view.

 9. In the Package Explorer tree, navigate to your project’s src directory.

 10. Inside the src directory, expand the branch for the package contain-
ing the project.

 The package name will resemble the name com.example.myfirst
androidapp.

 11. Within the package’s branch, double-click the MainActivity.java
file.

 The activity’s Java file appears in Eclipse’s editor. Eclipse created all
this code for you.

 12. In the editor, add the following fields to the MainActivity class’s
code:
Button button;
TextView textView;

 Listing 11-1 shows you exactly where to place the new section of code.
(Note that you still have to add some more code; that comes up in
Step 13.)

 Android’s Button class is in the android.widget package. To use the
short name Button, your code needs an import declaration. You can
type an import declaration yourself. Alternatively, Eclipse can add the
import declaration for you. After adding the Button button1 field and
seeing the nasty red squiggle underneath the name TextView, press
Ctrl+Shift+O. (That’s the letter O, not the digit 0.) This shortcut adds the
import declaration automatically. If you don’t like memorizing shortcut
keys, you can achieve the same effect by selecting Source➪Organize
Imports from Eclipse’s main menu.

 13. In Eclipse’s editor, add the following statements immediately after the
call to setContentView:
button = (Button) findViewById(R.id.button1);
button.setOnClickListener
 (new MyOnClickListener(this));
textView = (TextView) findViewById(R.id.textView1);

 Listing 11-1 has the proper placement of this new code.

307 Chapter 11: A Simple Android Example: Responding to a Button Click

 The editor displays a red squiggle under the name MyOnClick
Listener because you haven’t yet declared the MyOnClickListener
class. You do that in the next few steps.

 In this step, I assume that the item names you see in Step 7 are text
View1 and button1. If you see different names (such as textView01
and button01), use those alternative names after each occurrence of
R.id in Listing 11-1. For example, rather than use R.id.button1, use
R.id.button01. (No matter what names you see in Step 7, you don’t
have to change the names button and textView that you create in
Step 12. You can make up any variable names as long as you use these
variable names consistently throughout the class’s code.)

 14. In Eclipse’s main menu, select File➪Save.

 Doing so saves your changes to the MainActivity.java file.

 15. In the Package Explorer, right-click (on a Mac, Control-click) the
branch displaying your app’s package name.

 The package name will resemble com.example.myfirstandroidapp.

 16. From the resulting contextual menu that appears, select New➪Class.

 The New Java Class dialog box appears.

 17. In the Name field of the New Java Class dialog box, type MyOnClick
Listener (the same name you typed in the code in Step 13).

 18. Click Finish to dismiss the New Java Class dialog box.

 The New Java Class dialog box goes away, and a minimal
MyOnClickListener class appears in Eclipse’s editor. This class con-
tains (more or less) the following code:
package com.example.myfirstandroidapp;

public class MyOnClickListener {

}

 19. Add code to the (newly created) MyOnClickListener class, as shown
in Listing 11-2.

 20. In Eclipse’s main menu, select File➪Save.

 Doing so saves your changes to the new MyOnClickListener.java
file.

 21. Run your new Android app.

When you run the new app, you start with the display shown in Figure 11-4.
After clicking the button, you see the display shown in Figure 11-5.

308 Part IV: Powering Android with Java Code

Listing 11-1: Your Main Activity
package com.example.myfirstandroidapp;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.widget.Button;
import android.widget.TextView;

public class MainActivity extends Activity {
 Button button;
 TextView textView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 button = (Button) findViewById(R.id.button1);
 button.setOnClickListener
 (new MyOnClickListener(this));
 textView = (TextView) findViewById(R.id.textView1);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

}

Listing 11-2: A Class Listens for Button Clicks
package com.example.myfirstandroidapp;

import android.view.View;
import android.view.View.OnClickListener;

public class MyOnClickListener
 implements OnClickListener {
 MainActivity caller;

 public MyOnClickListener(MainActivity activity) {
 this.caller = activity;
 }

 public void onClick(View view) {
 caller.textView.setText(“You clicked the button!”);
 }
}

309 Chapter 11: A Simple Android Example: Responding to a Button Click

Figure 11-4:
Beginning

a run of
the code in

Listings 11-1
and 11-2.

Figure 11-5:
What you
see after

clicking the
button in

Listings 11-1
and 11-2.

The code in Listings 11-1 and 11-2 performs a callback, much the same
as the callback I describe in Chapter 10. In this chapter’s callback, the
MyOnClickListener class calls back to the activity’s textView object. As
in Chapter 10, the callback is possible for two reasons:

 ✓ Android’s built-in setOnClickListener method expects its param-
eter to implement Android’s OnClickListener interface.

 Here’s how it works in Listings 11-1 and 11-2:

	 •	In	Listing	11-1,	the	call	to	setOnClickListener has, as its param-
eter, a new MyOnClickListener object.

	 •	As	Listing	11-2	shows,	the	MyOnClickListener class implements
Android’s OnClickListener interface.

 If I don’t make the MyWhatever class implement the OnClickListener
interface, this call is illegal:
button.setOnClickListener(new MyWhatever(this));

310 Part IV: Powering Android with Java Code

 ✓ The MyOnClickListener object knows how to call back the activity
that constructed it.

 Again, in Listing 11-1, the MyOnClickListener constructor call passes
this to its new MyOnClickListener object. (“Call me back,” says your
activity’s code in Listing 11-1.) See Figure 11-6.

 Then, in Listing 11-2, the MyOnClickListener constructor makes a
mental note of who gets called back, by storing a reference to your activ-
ity in its own caller field. So, when push comes to shove, the code in
Listing 11-2 calls back caller.textView.setText, which changes the
words displayed in the original activity’s textView.

Figure 11-6:
The journey

of your
applica-

tion’s main
activity.

311 Chapter 11: A Simple Android Example: Responding to a Button Click

Making a view available to your Java code
In Listing 11-2, you execute the statement

caller.textView.setText(“You clicked the button!”);

For this statement to work correctly, the textView variable must refer to
a particular widget on the activity’s screen. In particular, the textView
variable must refer to the widget that displays the words Hello world! in
Figure 11-4. Presumably, this “widget” that displays those words is an instance
of Android’s TextView class. But who knows? Maybe the code has a mistake
in it. (I don’t presume to know much about the textView variable until later
in this section.)

Anyway, there’s a problem. That Hello World widget isn’t declared anywhere
inside Listings 11-1 or 11-2. Instead, it appears because of some stuff in the
application’s activity_main.xml file. You need a way to connect the stuff
in the XML file with the textView variable in your Java code.

How can you do that? In Chapter 4, I describe the way code numbers stand
for strings in Android apps. You put a line such as

<string name=”hello_world”>Hello world!</string>

in one of your project’s XML files. As a result, Android automatically puts the
following lines (and many more lines like them) inside an R.java file:

public final class R {

 public static final class string {
 public static final int hello_world=0x7f040001;
 }

}

Because of this code number mechanism, you can refer to Hello world!
in your code with the value R.string.hello_world. Under the hood,
the name R.string.hello_world stands for the hexadecimal number
0x7f040001, though you care only about the name R.string.hello_world.

One way or another, this whole code-number mechanism with its R.java file
allows you to connect values in your XML files with names in your Java code.

312 Part IV: Powering Android with Java Code

 All hexadecimal numbers in R.java files are arbitrary values. The number to
represent the hello_world string (the number 0x7f040001 in my example)
might be different in someone else’s R.java file or even in the R.java file
that Eclipse generates for you tomorrow. You can use the name R.string.
hello_world in your code, but never use the number 0x7f040001.

 Sometimes, I can’t resist seeing my code’s sordid underbelly. If mysterious
hex numbers bother you, find a website that converts hexadecimal numbers
to and from decimal numbers. You can type 0x7f040001, for example, into a
field on the web page and learn that it has the same value as the ordinary deci-
mal number 2130968577. You can’t do much with this information, but it’s nice
to know that hexadecimal numbers don’t involve any special magic.

An Android app has several XML files, one of which describes the layout of
the app’s main activity. Listing 11-3 contains the activity_main.xml file
for this section’s example.

Listing 11-3: A Layout File
<RelativeLayout xmlns:android=
 “http://schemas.android.com/apk/res/android”
 xmlns:tools=”http://schemas.android.com/tools”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:paddingBottom=
 “@dimen/activity_vertical_margin”
 android:paddingLeft=
 “@dimen/activity_horizontal_margin”
 android:paddingRight=
 “@dimen/activity_horizontal_margin”
 android:paddingTop=
 “@dimen/activity_vertical_margin”
 tools:context=”.MainActivity” >

 <TextView
 android:id=”@+id/textView1”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/hello_world” />

 <Button
 android:id=”@+id/button1”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_alignLeft=”@+id/textView1”
 android:layout_below=”@+id/textView1”
 android:layout_marginTop=”46dp”
 android:text=”Button” />

</RelativeLayout>

313 Chapter 11: A Simple Android Example: Responding to a Button Click

 The code that you see in your own project’s activity_main.xml file might
not be exactly the same as the code in Listing 11-3. For example, when you
drag a button onto your layout in Step 6, you might drop the button in a
slightly different place inside your activity’s screen. This is no big deal.

Fortunately, you don’t have to type the code in Listing 11-3. Eclipse’s tools do
the typing for you when you create your new Android project and you drop a
button into the app’s graphical layout.

In Listing 11-3, the lines

<TextView
 android:id=”@+id/textView1”
 . . .
<Button
 android:id=”@+id/button1”

tell Android to display a text view and a button on your activity’s screen.
These lines also tell Eclipse to create code numbers for the new text view and
the new button. Finally, these particular lines tell Eclipse to add some code to
your project’s R.java file, as shown in Listing 11-4.

Listing 11-4: A Few Lines from Your Project’s R.java File
public final class R {
 ...

 public static final class id {
 public static final int button1=0x7f080001;
 public static final int textView1=0x7f080000;
 }

 ...
}

The lines in this listing associate the names R.id.button1 and R.id.
textView1 with the numbers 0x7f080001 and 0x7f080000. So, indirectly,
the lines in Listing 11-4 associate the names R.id.button1 and R.id.
textView1 with the button and the text view on your main activity’s screen.

In your application’s main activity (refer to Listing 11-1), Android’s find-
ViewById method completes the chain of associations. The findViewById
method takes a number as its parameter (a number such as 0x7f080000 —
the value of R.id.textView1). The findViewById method looks up that
number and finds the widget associated with it (a widget from Listing 11-3).

314 Part IV: Powering Android with Java Code

Figure 11-7 illustrates the chain of associations in concrete terms. Using the
code snippet in Listing 11-4, the call

findViewById(R.id.textView1)

sends Android hunting for a view that’s connected with the number
0x7f080000. And because of the clever way that Eclipse generates the R.java
file, the number 0x7f080000 is associated with the appropriate text view
widget on the activity’s screen. Armed with the intermediate name R.id.
textView1, your Java code manages to find the appropriate widget in the
activity’s screen layout.

Figure 11-7:
How the

textView
variable

becomes
synonymous

with a wid-
get on the

screen.

315 Chapter 11: A Simple Android Example: Responding to a Button Click

Casting, again
When you call findViewById, Java doesn’t know what kind of view it will
find. The findViewById method always returns a View instance, but lots of
Android’s classes extend the View class. For example, the classes Button,
TextView, ImageView, CheckBox, Chronometer, and RatingBar all
extend Android’s View class. If you type the following code:

// DON’T DO THIS!!

TextView textView;

textView = findViewById(R.id.textView1);

Java lets out a resounding, resentful roar: “How dare you assume that the object
returned by a call to findViewById refers to an instance of the TextView
class!” (Actually, Java quietly and mechanically displays an error message in
Eclipse’s editor. But I like to personify Java as though it’s a stern taskmaster.)

In Listing 11-1, you appease the Java gods by adding a casting operator to
the code. You tell Java to convert whatever pops out of the findViewById
method call into a TextView object.

textView = (TextView) findViewById(R.id.textView1);

While you’re typing the code, Java humors you and says, “Your casting
operator shows me that you’re aware of the difference between a TextView
and any old View. I’ll do my best to interpret the View object that I find at
runtime as a TextView object.” (Actually, while you’re typing the code, Java
says nothing. The fact that Java doesn’t display any error messages when
you use this casting trick is a good sign. Java’s casting feature saves the day!)

 Casting prevents you from seeing an error message while you develop your
code. In that way, casting is quite a useful feature of Java. But casting can’t
save you if your code contains runtime errors. In Step 7, you verify that the
name textView1 represents a TextView widget. When the app runs, Java
grabs the R.id.textView1 widget from the activity_main.xml file,
and everything works just fine. But you may sometimes forget to check your
R.java names against the widgets in the XML file. A call to findViewById
spits out an ImageView widget when your casting tells Java to expect a
TextView widget. When this happens, Java chokes on the casting operator
and your app crashes during its run. Back to the drawing board!

 For a more complete discussion of casting, see Chapter 7.

316 Part IV: Powering Android with Java Code

Introducing Inner Classes
Does the diagram in Figure 11-6 seem unnecessarily complicated? Look at
all those arrows! You might expect to see a few somersaults as the caller
object bounces from place to place! The MyOnClickListener class (refer
to Listing 11-2) devotes much of its code to obsessively keeping track of this
caller object. Is there a simpler way to handle a simple button click?

There is. You can define a class inside another class. When you do, you’re
creating an inner class. It’s a lot like any other class. But within an inner
class’s code, you can refer to the enclosing class’s fields with none of the
froufrou in Listing 11-2. That’s why, at the beginning of this chapter, I sing the
praises of insider knowledge.

One big class with its own inner class can replace both Listings 11-1 and 11-2.
And the new inner class requires none of the exotic gyrations that you see
in the old MyOnClickListener class. Listing 11-5 contains this wonderfully
improved code.

Listing 11-5: A Class within a Class
package com.allmycode.myfirstandroidapp;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class MainActivity extends Activity {
 Button button;
 TextView textView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 button = (Button) findViewById(R.id.button1);
 button.setOnClickListener(new MyOnClickListener());
 textView = (TextView) findViewById(R.id.textView1);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;

317 Chapter 11: A Simple Android Example: Responding to a Button Click

 }

 class MyOnClickListener implements OnClickListener {

 public void onClick(View view) {
 textView.setText(“You clicked the button!”);
 }
 }

}

When you run the code in Listing 11-5, you see the results shown earlier, in
Figures 11-4 and 11-5.

Notice the relative simplicity of the new MyOnClickListener class in
Listing 11-5. Going from the old MyOnClickListener class (refer to
Listing 11-2) to the new MyOnClickListener inner class (refer to Listing 11-5),
you reduce the code’s size by a factor of three. But aside from the shrinkage,
all the complexity of Figure 11-6 is absent from Listing 11-5. The use of this,
caller, and textView in Listings 11-1 and 11-2 feels like a tangled rope. But
in Listing 11-5, when you pull both ends of the rope, you find that the rope isn’t
knotted.

An inner class needs no fancy bookkeeping in order to keep track of its
enclosing class’s fields. Near the end of Listing 11-5, the line

textView.setText(“You clicked the button!”);

refers to the MainActivity class’s textView field, which is exactly what
you want. It’s that straightforward.

No Publicity, Please!
Notice that the code in Listing 11-5 uses the MyOnClickListener class
only once. (The only use is in a call to button.setOnClickListener.) So I
ask, do you really need a name for something that’s used only once? No, you
don’t. (If there’s only one cat in the house, it’s safe to say “Hey, cat!”)

When you give a name to your disposable class, you have to type the name
twice: once when you call the class’s constructor:

button.setOnClickListener(new MyOnClickListener());

and a second time when you declare the class:

class MyOnClickListener implements OnClickListener {

318 Part IV: Powering Android with Java Code

To eliminate this redundancy, you can substitute the entire definition of the
class in the place where you’d ordinarily call the constructor. When you do
this, you have an anonymous inner class. Listing 11-6 shows you how it works.

Listing 11-6: A Class with No Name (Inside a Class with a Name)
package com.allmycode.myfirstandroidapp;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;

public class MainActivity extends Activity {
 Button button;
 TextView textView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 button = (Button) findViewById(R.id.button1);
 button.setOnClickListener(new OnClickListener() {
 public void onClick(View view) {
 textView.setText(“You clicked the button!”);
 }
 });
 textView = (TextView) findViewById(R.id.textView1);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

}

A run of the code from Listing 11-6 is shown in Figures 11-4 and 11-5. In other
words, the listing does exactly the same thing as its wordier counterparts in
this chapter. The big difference is that, unlike this chapter’s previous exam-
ples, the listing uses an anonymous inner class.

An anonymous inner class is a lot like an ordinary inner class. The big differ-
ence is that an anonymous inner class has no name. Nowhere in Listing 11-6

319 Chapter 11: A Simple Android Example: Responding to a Button Click

do you see a name like MyOnClickListener. Instead, you see what looks
like an entire class declaration inside a call to button.setOnClick
Listener. It’s as though the setOnClickListener call says, “The follow-
ing listener class, which no one else refers to, responds to the button clicks.”

As far as I’m concerned, the most difficult aspect of using an anonymous
inner class is keeping track of the code’s parentheses, curly braces, and other
non-alphabetic characters. Notice, for example, the string of closing punctua-
tion characters — !”);}}); — that straddles a few lines in Listing 11-6. The
indentation in that listing helps a little bit when you try to read a big mush of
anonymous inner class code, but it doesn’t help a lot. Fortunately, there’s a
nice correspondence between the code in Listing 11-5 and the anonymized
code in Listing 11-6. Figure 11-8 illustrates this correspondence.

Figure 11-8:
Turning

ordinary
inner

class code
(refer to

Listing 11-5)
into anony-
mous inner
class code

(refer to
Listing 11-6).

I feel obliged to include a written explanation of the material in Figure 11-8.
Here goes:

To go from a named inner class to an anonymous inner class, you replace
the named class’s constructor call with the entire class declaration. In
place of the class name, you put the name of the interface that the inner
class implements (or, possibly, the name of the class that the inner class
extends).

320 Part IV: Powering Android with Java Code

If you find my explanation helpful, I’m pleased. But if you don’t find it helpful,
I’m neither offended nor surprised. When I create a brand-new inner class, I
find my gut feeling and Figure 11-8 to be more useful than Java’s formal gram-
mar rules.

My humble advice: Start by writing code with no inner classes, such as
the code in Listing 11-5. Later, when you become bored with ordinary Java
classes, experiment by changing some of your ordinary classes into anony-
mous inner classes.

Doing It the Easy Way
With all the fuss about callbacks and inner classes in this chapter, I’m
tempted to end the chapter right here. So this is the last paragraph in
Chapter 11. Don’t read any further in this chapter. Really, there’s nothing
more to see here. Move on, everybody!

I warned you to skip the
rest of this chapter
Starting with Android 1.6 (code-named Donut, API Level 4), developers can
add click-handling code to a button, or to any other Android widget, without
creating a separate class. You don’t need the extra Java file in Listing 11-2 or
the inner class in Listing 11-5 or the anonymous inner class in Listing 11-6.

 The onClick attribute described in this section (which you shouldn’t be read-
ing) lets you handle clicks and other occurrences without coding any additional
classes. The onClick feature is quite convenient. But the onClick feature’s
existence doesn’t mean that you, the Android developer, don’t have to under-
stand callbacks and inner classes. Interfaces, callbacks, and inner classes are
used implicitly and explicitly in almost every Android application. And, among
all the introductory inner class examples, button clicking is one of the easiest to
understand. The use of an inner class to handle a button click is an old standby
among Java programming examples, so I use this example in Chapter 11, even
though Android provides this section’s fast, convenient onClick attribute
work-around.

The “no-hassle” way to click a button
In this section’s example, your app’s activity class handles the button click
on its own. You don’t create an additional class to handle the click.

321 Chapter 11: A Simple Android Example: Responding to a Button Click

You can follow the instructions in Chapter 2 to import this section’s example
from my website (http://allmycode.com/Java4Android). But if you
want to create the example on your own, follow these steps:

 1. Follow Steps 1 through 7 earlier in this chapter, in the section “The
First Button-Click Example.”

 2. Right-click (in Windows) or Control-click (on the Mac) the picture of
the button in the graphical layout.

 3. From the contextual menu that appears, select Other
Properties➪Inherited from View➪OnClick.

 A dialog box with a field labeled New onClick Value appears, as shown in
Figure 11-9.

Figure 11-9:
The New

onClick
Value dia-

log box.

 4. In the New onClick Value field, type the name of a method.

 In Figure 11-9, I typed the name whenButtonClicked. In the next sev-
eral steps, I assume that you type the same name, whenButtonClicked.

 5. Click OK to dismiss the dialog box.

 6. In Eclipse’s main menu, select File➪Save.

 Doing so saves your changes to the activity_main.xml file.

 Your actions in Steps 2 through 6 tell Android to look for a method with
the following header when the user clicks the button:
public void whenButtonClicked(View view)

 In the remaining steps, you add that whenButtonClicked method to
your app’s Java code.

 7. In the Package Explorer, navigate to your project’s src directory.

 8. Inside the src directory, expand the branch for the package contain-
ing the project.

 The package name is probably similar to com.example.myfirst
androidapp.

http://allmycode.com/Java4Android

322 Part IV: Powering Android with Java Code

 9. Within the package’s branch, double-click the MainActivity.java
file.

 The activity’s Java file appears in Eclipse’s editor. Eclipse created all
this Java code for you.

 10. In the editor, add the following field to your MainActivity class’s
code:
TextView textView;

 See Listing 11-7.

 After typing the TextView declaration, select Source➪Organize Imports
from Eclipse’s main menu. When you do, Eclipse automatically adds the
TextView class’s import declaration to your code.

 11. In Eclipse’s editor, add the following statement immediately after the
call to setContentView:
textView = (TextView) findViewById(R.id.textView1);

 Refer to Listing 11-7.

 12. Type the whenButtonClicked method in your code.

 You can find the method in Listing 11-7.

 13. From Eclipse’s main menu, select File➪Save.

 Doing so saves your changes to the activity_main.xml file.

 14. Run your project.

 The project runs exactly as it did in this chapter’s examples. Under
the hood, Android creates all the necessary callbacks to have your
whenButtonClicked method respond to the user’s actions.

Listing 11-7: Adding the whenButtonClicked Method to Your Code
package com.example.myfirstandroidappnew;

import android.app.Activity;
import android.os.Bundle;
import android.view.Menu;
import android.view.View;
import android.widget.TextView;

public class MainActivity extends Activity {
 TextView textView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {

323 Chapter 11: A Simple Android Example: Responding to a Button Click

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 textView = (TextView) findViewById(R.id.textView1);
 }

 public void whenButtonClicked(View view) {
 textView.setText(“You clicked the button!”);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

}

324 Part IV: Powering Android with Java Code

